Quantitative proteomics and phosphoproteomics of urinary extracellular vesicles define putative diagnostic biosignatures for Parkinson's disease

尿液细胞外囊泡的定量蛋白质组学和磷酸化蛋白质组学确定了帕金森病的推定诊断生物特征

阅读:4
作者:Marco Hadisurya, Li Li, Kananart Kuwaranancharoen, Xiaofeng Wu, Zheng-Chi Lee, Roy N Alcalay, Shalini Padmanabhan, W Andy Tao, Anton Iliuk4

Background

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been recognized as genetic risk factors for Parkinson's disease (PD). However, compared to cancer, fewer genetic mutations contribute to the cause of PD, propelling the search for protein biomarkers for early detection of the disease.

Conclusions

These findings demonstrate a general strategy of utilizing biofluid EV proteome/phosphoproteome as an outstanding and non-invasive source for a wide range of disease exploration.

Methods

Utilizing 138 urine samples from four groups, healthy individuals (control), healthy individuals with G2019S mutation in the LRRK2 gene (non-manifesting carrier/NMC), PD individuals without G2019S mutation (idiopathic PD/iPD), and PD individuals with G2019S mutation (LRRK2 PD), we applied a proteomics strategy to determine potential diagnostic biomarkers for PD from urinary extracellular vesicles (EVs).

Results

After efficient isolation of urinary EVs through chemical affinity followed by mass spectrometric analyses of EV peptides and enriched phosphopeptides, we identify and quantify 4476 unique proteins and 2680 unique phosphoproteins. We detect multiple proteins and phosphoproteins elevated in PD EVs that are known to be involved in important PD pathways, in particular the autophagy pathway, as well as neuronal cell death, neuroinflammation, and formation of amyloid fibrils. We establish a panel of proteins and phosphoproteins as novel candidates for disease biomarkers and substantiate the biomarkers using machine learning, ROC, clinical correlation, and in-depth network analysis. Several putative disease biomarkers are further partially validated in patients with PD using parallel reaction monitoring (PRM) and immunoassay for targeted quantitation. Conclusions: These findings demonstrate a general strategy of utilizing biofluid EV proteome/phosphoproteome as an outstanding and non-invasive source for a wide range of disease exploration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。