β 3-Adrenoreceptors Control Mitochondrial Dormancy in Melanoma and Embryonic Stem Cells

β3-肾上腺素能受体控制黑色素瘤和胚胎干细胞的线粒体休眠

阅读:7
作者:Maura Calvani, Lorenzo Cavallini, Annalisa Tondo, Valentina Spinelli, Luisa Ricci, Amada Pasha, Gennaro Bruno, Daniela Buonvicino, Elisabetta Bigagli, Marina Vignoli, Francesca Bianchini, Laura Sartiani, Maura Lodovici, Roberto Semeraro, Filippo Fontani, Francesco De Logu, Massimo Dal Monte, Paola C

Abstract

The early phases of embryonic development and cancer share similar strategies to improve their survival in an inhospitable environment: both proliferate in a hypoxic and catecholamine-rich context, increasing aerobic glycolysis. Recent studies show that β3-adrenergic receptor (β3-AR) is involved in tumor progression, playing an important role in metastasis. Among β-adrenergic receptors, β3-AR is the last identified member of this family, and it is involved in cancer cell survival and induction of stromal reactivity in the tumor microenvironment. β3-AR is well known as a strong activator of uncoupling protein 1 (UCP1) in brown fat tissue. Interestingly, β3-AR is strongly expressed in early embryo development and in many cancer tissues. Induction of uncoupling protein 2 (UCP2) has been related to cancer metabolic switch, leading to accelerated glycolysis and reduced mitochondrial activity. In this study, for the first time, we demonstrate that β3-AR is able to promote this metabolic shift in both cancer and embryonic stem cells, inducing specific glycolytic cytoplasmic enzymes and a sort of mitochondrial dormancy through the induction of UCP2. The β3-AR/UCP2 axis induces a strong reduction of mitochondrial activity by reducing ATP synthesis and mitochondrial reactive oxygen species (mtROS) content. These effects are reverted by SR59230A, the specific β3-AR antagonist, causing an increase in mtROS. The increased level of mtROS is neutralized by a strong antioxidant activity in embryonic stem cells, but not in cancer stem cells, where it causes a dramatic reduction in tumor cell viability. These results lead to the possibility of a selective antitumor therapeutic use of SR59230A. Notably, we demonstrate the presence of β3-AR within the mitochondrial membrane in both cell lines, leading to the control of mitochondrial dormancy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。