Circular Design and Functionalized Upcycling of Waste Commodity Polystyrene via C-H Activation Using Microwave-Assisted Multicomponent Synthesis

利用微波辅助多组分合成进行 CH 活化,对废弃商品聚苯乙烯进行循环设计和功能化升级再造

阅读:7
作者:Shegufta Shetranjiwalla, Claire Cislak, Kevin M Scotland

Abstract

The inefficient reuse and recycling of plastics-and the current surge of medical and take-out food packaging use during the pandemic-have exacerbated the environmental burden. This impels the development of alternative recycling/upcycling methods to pivot toward circularity. We report the use of the Mannich three-component coupling reaction for the modification of polystyrene (PS) recovered with a 99.1% yield from waste food containers to form functionalized nitrogen and oxygen-rich PS derivatives. A series of functionalized PS with increasing moles of formaldehyde (F) and morpholine (M) (0.5 × 10-2, 1.0 × 10-2, and 2.0 × 10-2 mol) was achieved using a sol-gel-derived Fe-TiO2 catalyst in a solvent-free, microwave-assisted synthesis. Modified polymers were characterized with viscometry, 1H NMR, 13CNMR (DEPT) FTIR, XPS, UV, and TGA. Functionalization scaled with an increasing ratio, validating the 3CR approach. Further functionalization was constrained by a competing oxidative degradation; however, the varying hydrogen bond density due to nitrogen and oxygen-rich species at higher ratios was shown to compensate for molecular weight loss. The integration of the N-cyclic quaternary ammonium cations exhibited the potential of functionalized polymers for ion-exchange membrane applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。