Reynolds-average Navier-Stokes turbulence models assessment: A case study of CH4/H2/N2-air reacting jet

雷诺平均纳维-斯托克斯湍流模型评估:CH4/H2/N2-空气反应射流案例研究

阅读:7
作者:Yaniel Garcia Lovella, Idalberto Herrera Moya, Jeevan Jayasuriya, Julien Blondeau

Abstract

Computational Fluid Dynamics has become a very powerful tool for developing engineering combustion devices, such as burners and furnaces. However, there are a wide variety of turbulence models, and some of them have proven to be more effective for some turbulent flow configurations than others. A reacting turbulent jet is a common flow configuration found in combustion engineering devices like burners. The present work assesses Reynolds-Average Navier-Stokes turbulence models, being tested on a CH4/H2/N2-Air reacting jet. Eight two-equation eddy-viscosity and three five-equation turbulence models were tested in the studied turbulent flow. Computational results were compared against experimental measurements in terms of flow field variables, mean mixture fraction, temperature, and species mass fraction. The findings suggest a strong influence of the turbulence model perforce on the mean mixture fraction as well as on the turbulence-chemistry interaction model. The modified version of the standard k-ε model proves to be the more reliable choice for this reactive flow configurations. Specially, where the flow patterns of the jet dictate the general flow physics. Near the fuel nozzle, both the Reynolds stress model with stress baseline k-ω (RSM-SBSL) and the standard k-ω model exhibit better agreement with experimental data than the conventional modified k-ε model. Moreover, findings from the standard modified k-ε model indicate a significant underestimation of spreading rates for radial samples in regions where jet spreading intensifies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。