Evaluation of ultrastructural alterations of glomerular basement membrane and podocytes in glomeruli by low-vacuum scanning electron microscopy

低真空扫描电子显微镜评价肾小球基底膜和足细胞超微结构的改变

阅读:12
作者:Ping Lan #, Dedong Kang #, Akiko Mii, Yoko Endo, Masako Tagawa, Xiaoyang Yu, Jia Lyu, Liyi Xie, Akira Shimizu, Mika Terasaki

Background

Low-vacuum scanning electron microscopy (LV-SEM) is applied to diagnostic renal pathology.

Conclusion

Our findings suggest that LV-SEM is a useful assessment tool for evaluating the alterations of GBM and podocytes in renal pathology using routine LM and IF specimens, as well as 2.5%GFPE specimens.

Methods

To demonstrate the usefulness of LV-SEM and to clarify the optimal conditions of pathology samples, we investigated the alterations of glomerular basement membrane (GBM) and podocytes in control and experimental active Heymann nephritis (AHN) rats by LV-SEM.

Results

On week 15 following induction of AHN, spike formation on GBM with diffuse deposition of IgG and C3 developed. Using LV-SEM, diffuse crater-like protrusions were clearly noted three-dimensionally (3D) on surface of GBM in the same specimens of light microscopy (LM) and immunofluorescence (IF) studies only after removal coverslips or further adding periodic acid-silver methenamine (PAM) staining. These 3D ultrastructural findings of GBM surface could be detected in PAM-stained specimens by LV-SEM, although true GBM surface findings could not be obtained in acellular glomeruli, because some subepithelial deposits remained on surface of GBM. Adequate thickness was 1.5-5 μm for 10% formalin-fixed paraffin-embedded (FFPE) and 5-10 μm for the unfixed frozen sections. The foot processes and their effacement of podocytes could be observed by LV-SEM using 10%FFPE specimens with platinum blue (Pt-blue) staining or double staining of PAM and Pt-blue. These findings were obtained more large areas in 2.5% glutaraldehyde-fixed paraffin-embedded (2.5%GFPE) specimens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。