Cardiovascular Disease Prediction by Machine Learning Algorithms Based on Cytokines in Kazakhs of China

基于细胞因子的机器学习算法预测中国哈萨克族心血管疾病

阅读:8
作者:Yunxing Jiang #, Xianghui Zhang #, Rulin Ma, Xinping Wang, Jiaming Liu, Mulatibieke Keerman, Yizhong Yan, Jiaolong Ma, Yanpeng Song, Jingyu Zhang, Jia He, Shuxia Guo, Heng Guo

Background

Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Accurately identifying subjects at high-risk of CVD may improve CVD outcomes. We sought to systematically examine the feasibility and performance of 7 widely used machine learning (ML) algorithms in predicting CVD risks.

Conclusion

SVM and LR can be applied to guide clinical decision-making in the Kazakh Chinese population, and further study is required to ensure their accuracies.

Methods

The final analysis included 1508 Kazakh subjects in China without CVD at baseline who completed follow-up. All subjects were randomly divided into the training set (80%) and the test set (20%). L1-penalized logistic regression (LR), support vector machine with radial basis function (SVM), decision tree (DT), random forest (RF), k-nearest neighbors (KNN), Gaussian naive Bayes (NB), and extreme gradient boosting (XGB) were employed for prediction CVD outcomes. Ten-fold cross-validation was used during model developing and hyperparameters tuning in the training set. Model performance was evaluated in the test set in light of discrimination, calibration, and clinical usefulness. RF was applied to obtain the variable importance of included variables. Twenty-two variables, including sociodemographic characteristics, medical history, cytokines, and synthetic indices, were used for model development.

Results

Among 1508 subjects, 203 were diagnosed with CVD over a median follow-up of 5.17 years. All 7 models had moderate to excellent discrimination (AUC ranged from 0.770 to 0.872) and were well calibrated. LR and SVM performed identically with an AUC of 0.872 (95% CI: 0.829-0.907) and 0.868 (95% CI: 0.825-0.904), respectively. LR had the lowest Brier score (0.078) and the highest sensitivity (97.1%). Decision curve analysis indicated that SVM was slightly better than LR. The inflammatory cytokines, such as hs-CRP and IL-6, were identified as strong predictors of CVD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。