Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi

盐度对海洋浮游真菌胞外酶活性的影响

阅读:9
作者:Katherine Salazar-Alekseyeva, Gerhard J Herndl, Federico Baltar

Abstract

Even though fungi are ubiquitous in the biosphere, the ecological knowledge of marine fungi remains rather rudimentary. Also, little is known about their tolerance to salinity and how it influences their activities. Extracellular enzymatic activities (EEAs) are widely used to determine heterotrophic microbes' enzymatic capabilities and substrate preferences. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). Due to their sensitivity and specificity, fluorogenic substrate analogues were used to determine hydrolytic activity on carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase); peptides (leucine aminopeptidase and trypsin); lipids (lipase); organic phosphorus (alkaline phosphatase), and sulfur compounds (sulfatase). Afterwards, kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were calculated. All fungal species investigated cleaved these substrates, but some species were more efficient than others. Moreover, most enzymatic activities were reduced in the saline medium, with some exceptions like sulfatase. In non-saline conditions, the average Vmax ranged between 208.5 to 0.02 μmol/g biomass/h, and in saline conditions, 88.4 to 0.02 μmol/g biomass/h. The average Km ranged between 1553.2 and 0.02 μM with no clear influence of salinity. Taken together, our results highlight a potential tolerance of marine fungi to freshwater conditions and indicate that changes in salinity (due to freshwater input or evaporation) might impact their enzymatic activities spectrum and, therefore, their contribution to the oceanic elemental cycles.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。