Role of DNA damage-induced replication checkpoint in promoting lesion bypass by translesion synthesis in yeast

DNA损伤诱导的复制检查点在酵母中通过跨损伤合成促进损伤绕过中的作用

阅读:5
作者:Vincent Pagès, Sergio R Santa Maria, Louise Prakash, Satya Prakash

Abstract

Unrepaired DNA lesions in the template strand block the replication fork. In yeast, Mec1 protein kinase-mediated replication checkpoint prevents the breakdown of replication forks and maintains viability in DNA-damaged cells going through the S phase. By ensuring that the replisome does not dissociate from the fork stalled at the lesion site, the replication checkpoint presumably coordinates the action of lesion bypass processes with the replisome. However, it has remained unclear as to which of the lesion bypass processes-translesion synthesis (TLS) and/or template switching-depend on the activation of the replication checkpoint. Here we determine if the Mec1 kinase and the subunits of the checkpoint clamp and the clamp loader are required for TLS. We show that proficient TLS can occur in the absence of these checkpoint proteins in nucleotide excision repair (NER)-proficient cells; however, in the absence of NER, checkpoint protein-mediated Rev1 phosphorylation contributes to increasing the proficiency of DNA polymerase zeta-dependent TLS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。