Propofol Inhibits Cell Proliferation, Migration, and Invasion via mir-410-3p/Transforming Growth Factor-β Receptor Type 2 (TGFBR2) Axis in Glioma

丙泊酚通过 mir-410-3p/转化生长因子-β 受体 2 型 (TGFBR2) 轴抑制胶质瘤细胞增殖、迁移和侵袭

阅读:7
作者:Fengli Li, Fengliang Li, Wei Chen

Abstract

BACKGROUND Propofol is a common intravenous anesthetic used to induce and maintain anesthesia. Numerous studies have reported that propofol plays an anti-tumor role in diverse human cancers, including glioma. In this research, we explored the roles of propofol and its related molecular mechanisms in glioma. MATERIAL AND METHODS U251 and A172 cells were exposed to different doses of propofol for 24 h. Cell proliferation, migration, and invasion in glioma were evaluated using MTT assay and Transwell assay, respectively. The levels of microRNA-410-3p (miR-410-3p) and transforming growth factor-ß receptor type 2 (TGFBR2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) assay and Western blot assay, respectively. The association between miR-410-3p and TGFBR2 was predicted by TargetScan and confirmed by dual-luciferase reporter assay. RESULTS Propofol inhibited the proliferation, migration, and invasion of glioma cells in a concentration-dependent way. miR-410-3p was induced and TGFBR2 was inhibited by different concentrations of propofol treatment. Moreover, TGFBR2 was confirmed to be a target gene of miR-410-3p and TGFBR2 was inversely modulated by miR-410-3p in glioma cells. Depletion of miR-410-3p reversed the inhibition of propofol treatment on U251 and A172 cell growth and metastasis, but the effects were further abolished by knocking down the expression of TGFBR2. CONCLUSIONS Propofol can suppress cell growth and metastasis by regulating the miR-410-3p/TGFBR2 axis in glioma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。