How Insertion of a Single Tryptophan in the N-Terminus of a Cecropin A-Melittin Hybrid Peptide Changes Its Antimicrobial and Biophysical Profile

在天蚕素 A-蜂毒肽混合肽的 N 端插入单个色氨酸如何改变其抗菌和生物物理特性

阅读:5
作者:Ana Rita Ferreira, Cátia Teixeira, Carla F Sousa, Lucinda J Bessa, Paula Gomes, Paula Gameiro

Abstract

In the era of antibiotic resistance, there is an urgent need for efficient antibiotic therapies to fight bacterial infections. Cationic antimicrobial peptides (CAMP) are promising lead compounds given their membrane-targeted mechanism of action, and high affinity towards the anionic composition of bacterial membranes. We present a new CAMP, W-BP100, derived from the highly active BP100, holding an additional tryptophan at the N-terminus. W-BP100 showed a broader antibacterial activity, demonstrating a potent activity against Gram-positive strains. Revealing a high partition constant towards anionic over zwitterionic large unilamellar vesicles and inducing membrane saturation at a high peptide/lipid ratio, W-BP100 has a preferential location for hydrophobic environments. Contrary to BP100, almost no aggregation of anionic vesicles is observed around saturation conditions and at higher concentrations no aggregation is observed. With these results, it is possible to state that with the incorporation of a single tryptophan to the N-terminus, a highly active peptide was obtained due to the π-electron system of tryptophan, resulting in negatively charged clouds, that participate in cation-π interactions with lysine residues. Furthermore, we propose that W-BP100 action can be achieved by electrostatic interactions followed by peptide translocation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。