Deletion of activating Fcgamma receptors does not confer protection in murine cryoglobulinemia-associated membranoproliferative glomerulonephritis

激活 Fcgamma 受体的缺失并不能对小鼠冷球蛋白血症相关膜增生性肾小球肾炎提供保护

阅读:8
作者:Shunhua Guo, Anja S Mühlfeld, Tomasz A Wietecha, Carine J Peutz-Kootstra, Jolanta Kowalewska, Kenneth Yi, Min Spencer, Warangkana Pichaiwong, Falk Nimmerjahn, Kelly L Hudkins, Charles E Alpers

Abstract

Many types of glomerulonephritis are initiated by the deposition of immune complexes, which induce tissue injury via either engagement of Fc receptors on effector cells or via complement activation. Four murine Fcgamma receptors (FcgammaRs) have been identified at present. Ligand binding to FcgammaRI, III, and IV induces cell activation via the immunoreceptor tyrosine-based activation motif on the common gamma chain (FcRgamma). In this study, FcRgamma chain knockout (FcRgamma(-/-)) mice were crossed with thymic stromal lymphopoietin transgenic (TSLPtg) mice, which develop cryoglobulinemic membranoproliferative glomerulonephritis (MPGN). Female mice were studied at 30 and 50 days of age, when MPGN is in early and fully developed stages, respectively. Both TSLPtg and TSLPtg/FcRgamma(-/-) mice developed MPGN with massive glomerular immune deposits, mesangial cell proliferation, extensive mesangial matrix accumulation, and macrophage influx. TSLPtg/FcRgamma(-/-) mice had more glomerular immune complex deposits and higher levels of circulating cryoglobulins, IgG2a, IgG2b, and IgM, compared with TSLPtg mice. TSLPtg and TSLPtg/FcRgamma(-/-) mice developed similar levels of proteinuria. These results demonstrated that deletion of activating FcgammaRs does not confer protection in this model of immune complex-mediated MPGN. The findings contradict accepted paradigms on the role of activating FcgammaRs in promoting features of glomerulonephritis as seen in other model systems. We speculate engagement of FcgammaRs on cells such as monocytes/macrophages may be important for the clearance of deposited immune complexes and extracellular matrix proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。