VasoMetrics: unbiased spatiotemporal analysis of microvascular diameter in multi-photon imaging applications

VasoMetrics:多光子成像应用中微血管直径的无偏时空分析

阅读:5
作者:Konnor P McDowell, Andrée-Anne Berthiaume, Taryn Tieu, David A Hartmann, Andy Y Shih

Background

Multi-photon imaging of the cerebrovasculature provides rich data on the dynamics of cortical arterioles, capillaries, and venules. Vascular diameter is the major determinant of blood flow resistance, and is the most commonly quantified metric in studies of the cerebrovasculature. However, there is a lack of accessible and easy-to-use

Conclusions

VasoMetrics is a robust macro for spatiotemporal analysis of microvascular diameter in imaging applications.

Methods

We created VasoMetrics, a macro written in ImageJ/Fiji for spatiotemporal analysis of microvascular diameter. The key feature of VasoMetrics is rapid analysis of many evenly spaced cross-sectional lines along the vessel of interest, permitting the extraction of numerous diameter measurements from individual vessels. Here we demonstrated the utility of VasoMetrics by analyzing in vivo multi-photon imaging stacks and movies collected from lightly sedated mice, as well as data from optical coherence tomography angiography (OCTA) of human retina.

Results

Compared to the standard approach, which is to measure cross-sectional diameters at arbitrary points along a vessel, VasoMetrics accurately reported spatiotemporal features of vessel diameter, reduced measurement bias and time spent analyzing data, and improved the reproducibility of diameter measurements between users. VasoMetrics revealed the dynamics in pial arteriole diameters during vasomotion at rest, as well as changes in capillary diameter before and after pericyte ablation. Retinal arteriole diameter was quantified from a human retinal angiogram, providing proof-of-principle that VasoMetrics can be applied to contrast-enhanced clinical imaging of microvasculature. Conclusions: VasoMetrics is a robust macro for spatiotemporal analysis of microvascular diameter in imaging applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。