Comparative Metabolomic Profiling of Hepatocellular Carcinoma Cells Treated with Sorafenib Monotherapy vs. Sorafenib-Everolimus Combination Therapy

索拉非尼单药治疗与索拉非尼-依维莫司联合治疗的肝细胞癌细胞代谢组学比较分析

阅读:5
作者:Jian-Feng Zheng, Juan Lu, Xiao-Zhong Wang, Wu-Hua Guo, Ji-Xiang Zhang

Background

Sorafenib-everolimus combination therapy may be more effective than sorafenib monotherapy for hepatocellular carcinoma (HCC). To better understand this effect, we comparatively profiled the metabolite composition of HepG2 cells treated with sorafenib, everolimus, and sorafenib-everolimus combination therapy. Material and

Conclusions

Sorafenib and everolimus have differential effects on HepG2 cells. Sorafenib preferentially affects glycerophospholipid and purine metabolism, while the addition of everolimus preferentially affects pyruvate, amino acid, and glucose metabolism. This phenomenon may explain (in part) the synergistic effects of sorafenib-everolimus combination therapy observed in vivo.

Material and methods

A 2D HRMAS 1H-NMR metabolomic approach was applied to identify the key differential metabolites in 3 experimental groups: sorafenib (5 µM), everolimus (5 µM), and combination therapy (5 µM sorafenib +5 µM everolimus). MetaboAnalyst 3.0 was used to perform pathway analysis.

Methods

A 2D HRMAS 1H-NMR metabolomic approach was applied to identify the key differential metabolites in 3 experimental groups: sorafenib (5 µM), everolimus (5 µM), and combination therapy (5 µM sorafenib +5 µM everolimus). MetaboAnalyst 3.0 was used to perform pathway analysis.

Results

All OPLS-DA models displayed good separation between experimental groups, high-quality goodness of fit (R2), and high-quality goodness of predication (Q2). Sorafenib and everolimus have differential effects with respect to amino acid, methane, pyruvate, pyrimidine, aminoacyl-tRNA biosynthesis, and glycerophospholipid metabolism. The addition of everolimus to sorafenib resulted in differential effects with respect to pyruvate, amino acid, methane, glyoxylate and dicarboxylate, glycolysis or gluconeogenesis, glycerophospholipid, and purine metabolism. Conclusions: Sorafenib and everolimus have differential effects on HepG2 cells. Sorafenib preferentially affects glycerophospholipid and purine metabolism, while the addition of everolimus preferentially affects pyruvate, amino acid, and glucose metabolism. This phenomenon may explain (in part) the synergistic effects of sorafenib-everolimus combination therapy observed in vivo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。