MLK1 and MLK2 Coordinate RGA and CCA1 Activity to Regulate Hypocotyl Elongation in Arabidopsis thaliana

MLK1 和 MLK2 协调 RGA 和 CCA1 活性来调节拟南芥下胚轴伸长

阅读:6
作者:Han Zheng, Fei Zhang, Shiliang Wang, Yanhua Su, Xiaoru Ji, Pengfei Jiang, Rihong Chen, Suiwen Hou, Yong Ding

Abstract

Gibberellins (GAs) modulate diverse developmental processes throughout the plant life cycle. However, the interaction between GAs and the circadian rhythm remains unclear. Here, we report that MUT9p-LIKE KINASE1 (MLK1) and MLK2 mediate the interaction between GAs and the circadian clock to regulate hypocotyl elongation in Arabidopsis thaliana DELLA proteins function as master growth repressors that integrate phytohormone signaling and environmental pathways in plant development. MLK1 and MLK2 interact with the DELLA protein REPRESSOR OF ga1-3 (RGA). Loss of MLK1 and MLK2 function results in plants with short hypocotyls and hyposensitivity to GAs. MLK1/2 and RGA directly interact with CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which targets the promoter of DWARF4 (DWF4) to regulate its roles in cell expansion. MLK1/2 antagonize the ability of RGA to bind CCA1, and these factors coordinately regulate the expression of DWF4 RGA suppressed the ability of CCA1 to activate expression from the DWF4 promoter, but MLK1/2 reversed this suppression. Genetically, MLK1/2 act in the same pathway as RGA and CCA1 in hypocotyl elongation. Together, our results provide insight into the mechanism by which MLK1 and MLK2 antagonize the function of RGA in hypocotyl elongation and suggest that MLK1/2 coordinately mediate the regulation of plant development by GAs and the circadian rhythm in Arabidopsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。