Smac modulates chemosensitivity in head and neck cancer cells through the mitochondrial apoptotic pathway

Smac 通过线粒体凋亡途径调节头颈癌细胞的化学敏感性

阅读:5
作者:Quanhong Sun, Xingnan Zheng, Lin Zhang, Jian Yu

Conclusions

Our results establish a critical role of Smac in mediating therapeutic responses of HNSCC cells and provide a strong rationale for combining Smac mimetics with other anticancer agents to treat HNSCC.

Purpose

Overexpression of inhibitors of apoptosis proteins (IAP) contributes to therapeutic resistance. Second mitochondria-derived activator of caspase (Smac) promotes caspase activation by binding to IAPs upon release from the mitochondria. IAP antagonists, also called SMAC mimetics, are promising anticancer agents modeled after this mechanism. We investigated the role and mechanisms of Smac- and Smac mimetic-mediated chemosensitization in head and neck squamous cell carcinoma (HNSCC) cells. Experimental design: The effects of SMAC knockdown, SMAC overexpression, and a small molecule Smac mimetic on the chemosensitivities of HNSCC cells were determined. The mechanisms of Smac- and Smac mimetic-mediated chemosensitization were investigated by analyzing growth suppression, the mitochondrial apoptotic pathway, caspase activation, and IAP proteins. The therapeutic responses of HNSCC cells with different levels of Smac were compared in xenograft models.

Results

We found that Smac mediates apoptosis induced by several classes of therapeutic agents through the mitochondrial pathway. SMAC knockdown led to impaired caspase activation, mitochondrial membrane depolarization, and release of cytochrome c. A small molecule Smac mimetic, at nanomolar concentrations, significantly sensitized HNSCC cells to gemcitabine-induced apoptosis and restored gemcitabine sensitivity in SMAC knockdown cells, through caspase activation, X-linked IAP dissociation, and mitochondria-associated events, but not the TNF-α pathway. Furthermore, Smac levels modulated the therapeutic response of HNSCC cells to gemcitabine in xenograft models. Conclusions: Our results establish a critical role of Smac in mediating therapeutic responses of HNSCC cells and provide a strong rationale for combining Smac mimetics with other anticancer agents to treat HNSCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。