NLRP6 self-assembles into a linear molecular platform following LPS binding and ATP stimulation

NLRP6 在 LPS 结合和 ATP 刺激后自组装成线性分子平台

阅读:5
作者:Fangwei Leng, Hang Yin, Siying Qin, Kai Zhang, Yukun Guan, Run Fang, Honglei Wang, Guohui Li, Zhengfan Jiang, Fei Sun, Da-Cheng Wang, Can Xie

Abstract

NOD-like receptors (NLRs) localize in the cytosol to recognize intracellular pathogen products and initialize the innate immune response. However, the ligands and ligand specificity of many NLRs remain unclear. One such NLR, NLRP6, plays an important role in maintaining intestinal homeostasis and protecting against various intestinal diseases such as colitis and intestinal tumorigenesis. Here, we show that the major component of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS), binds NLRP6 directly and induces global conformational change and dimerization. Following stimulation by ATP, the NLRP6 homodimer can further assemble into a linear molecular platform, and ASC is recruited to form higher molecular structures, indicative of a step-by-step activation mechanism. Our study sheds light on the mystery of LPS-induced inflammasome initiation, reveals the architecture and structural basis of potential pre-inflammasome, and suggests a novel molecular assembly pattern for immune receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。