Insulin Access to Skeletal Muscle is Preserved in Obesity Induced by Polyunsaturated Diet

多不饱和饮食引起的肥胖症可以维持骨骼肌的胰岛素供应

阅读:6
作者:Josiane L Broussard, Richard N Bergman, Isaac Asare Bediako, Rebecca L Paszkiewicz, Malini S Iyer, Cathryn M Kolka

Conclusions

A diet high in polyunsaturated fat does not impair insulin access to muscle interstitium or induce insulin resistance as observed with a saturated fat diet, despite similar weight gain. Future studies should determine whether dietary SO supplementation improves impairments in insulin access to skeletal muscle.

Methods

After 12 weeks of control, saturated (LARD), or polyunsaturated (salmon oil [SO]) high-fat diet feeding, muscle SI and insulin access to skeletal muscle were measured by using lymph, a surrogate of skeletal muscle interstitial fluid.

Objective

Diets high in saturated fat induce obesity and insulin resistance and impair insulin access to skeletal muscle, leading to reduced insulin levels at the muscle cell surface available to bind insulin receptors and induce glucose uptake. In contrast, diets supplemented with polyunsaturated fat improve insulin sensitivity (SI) and reduce the risk for type 2 diabetes. It was hypothesized that a diet high in polyunsaturated fat would preserve SI and insulin access to muscle, as compared with a diet high in saturated fat.

Results

Both high-fat diets induced similar weight gain, yet only LARD impaired SI. Hyperinsulinemia in the LARD group did not induce an increase in basal interstitial insulin, suggesting reduced insulin access to muscle after LARD, but not after SO. Conclusions: A diet high in polyunsaturated fat does not impair insulin access to muscle interstitium or induce insulin resistance as observed with a saturated fat diet, despite similar weight gain. Future studies should determine whether dietary SO supplementation improves impairments in insulin access to skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。