Vitamin D protects spermatogonia and Sertoli cells from heat stress damage by inhibiting NLRP3

维生素 D 通过抑制 NLRP3 保护精原细胞和塞托利细胞免受热应激损伤

阅读:7
作者:Han Chu, Qi-Fei Deng, Yuan Fang

Conclusions

This is the first time we found the expression of NLRP3 in cryptorchidism. Vitamin D can inhibit the expression of NLRP3 and reduce the damage of heat stress on testicular spermatogenic cells and Sertoli cells, and play a protective role for testicular spermatogenic cells and Sertoli cells. This provides a theoretical basis for preserving testicular function during the "treatment gap" in boys with cryptorchidism who have not received surgical treatment.

Methods

Five cases of normal testicular tissue adjacent to a tumor (testis removed due to tumorous growth) and five cases of atrophied cryptorchid testicular tissue (testis removed) were analyzed for immunohistochemistry to determine NLRP3 expression in cryptorchid tissue. In Phase I, spermatogonia (GC-1) and Sertoli cells (TM4) were separated into blank and heat stress groups. Apoptosis, inflammatory factor levels, and the expression of Bcl-2 and NLRP3 genes and proteins were measured at 2, 6, and 10 h after heat stress treatment. In Phase II, the cells were re-cultured and divided into three groups: heat stress, siRNA + heat stress, and VD + heat stress. After 10 h, the apoptosis, inflammatory factor levels, and gene and protein expressions of Bcl-2 and NLRP3 were reassessed in each group.

Results

Immunohistochemistry indicated NLRP3 expression in cryptorchid tissue. Phase I, extending heat stress duration led to increased apoptosis in spermatogonia (GC-1) and testicular Sertoli cells (TM4), heightened levels of inflammatory factors, reduced BCL-2 expression, and elevated NLRP3 expression compared to the control group. Phase II, both the siRNA + heat stress and VD + heat stress groups showed decreased apoptosis in spermatogonia and Sertoli cells, lower inflammatory factor levels, increased BCL-2 expression, and decreased NLRP3 expression compared to the heat stress-only group, with statistically significant differences (P < 0.05). Conclusions: This is the first time we found the expression of NLRP3 in cryptorchidism. Vitamin D can inhibit the expression of NLRP3 and reduce the damage of heat stress on testicular spermatogenic cells and Sertoli cells, and play a protective role for testicular spermatogenic cells and Sertoli cells. This provides a theoretical basis for preserving testicular function during the "treatment gap" in boys with cryptorchidism who have not received surgical treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。