Conclusion
RGS10 negatively regulates NF-κB proinflammatory signaling in periapical periodontitis and participates in bone remodeling. Therefore, RGS10 is a promising treatment option for long-term chronic periapical inflammation and may be a new target for the artificial regulation of inflammation.
Methods
Disease models of periapical inflammation in mice were established, and adenovirus-associated virus (AAV) was used to inhibit RGS10 expression. Periapical lesions were detected using micro-computed tomography. Quantitative reverse transcriptase PCR (qRT-PCR), western blotting (WB), enzyme-linked immunosorbent assay (ELISA), enzyme activity staining of tartrate-resistant acid phosphatase, and immunohistochemistry were conducted to assess the role of RGS10 expression on NF-κB proinflammatory signaling, OPG, RANKL, and osteoclasts in the periapical regions of each group. TNFα was used to stimulate L929 cells alone or with small interfering RNA (siRNA). To assess the expression of associated molecules, WB, immunofluorescence, qRT-PCR, and ELISA were performed.
Results
RGS10 inhibition increased alveolar bone destruction in periapical periodontitis lesions and substantially enhanced the NF-κB proinflammatory signaling pathway activation level. Furthermore, RGS10 inhibition upregulated the ratio of OPG/RANKL and the maturation of osteoclasts during alveolar bone resorption. L929 cell TNFα stimulation and siRNA transfection confirmed these in vivo results.
