Development of a Microfluidic Vascularized Osteochondral Model as a Drug Testing Platform for Osteoarthritis

开发微流体血管化骨软骨模型作为骨关节炎药物测试平台

阅读:12
作者:Shima Salehi, Stefania Brambilla, Marco Rasponi, Silvia Lopa, Matteo Moretti

Abstract

Osteoarthritis (OA) is a degenerative joint disease characterized by changes in cartilage and subchondral bone. To date, there are no available drugs that can counteract the progression of OA, partly due to the inadequacy of current models to recapitulate the relevant cellular complexity. In this study, an osteochondral microfluidic model is developed using human primary cells to mimic an OA-like microenvironment and this study validates it as a drug testing platform. In the model, the cartilage compartment is created by embedding articular chondrocytes in fibrin hydrogel while the bone compartment is obtained by embedding osteoblasts, osteoclasts, endothelial cells, and mesenchymal stem cells in a fibrin hydrogel enriched with calcium phosphate nanoparticles. After developing and characterizing the model, Interleukin-1β is applied to induce OA-like conditions. Subsequently, the model potential is evaluated as a drug testing platform by assessing the effect of two anti-inflammatory drugs (Interleukin-1 Receptor antagonist and Celecoxib) on the regulation of inflammation- and matrix degradation-related markers. The model responded to inflammation and demonstrated differences in drug efficacy. Finally, it compares the behavior of the "Cartilage" and "Cartilage+Bone" models, emphasizing the necessity of incorporating both cartilage and bone compartments to capture the complex pathophysiology of OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。