A High-Throughput Distal Lung Air-Blood Barrier Model Enabled By Density-Driven Underside Epithelium Seeding

通过密度驱动的下侧上皮细胞接种实现的高通量远端肺气血屏障模型

阅读:5
作者:Hannah Viola, Kendra Washington, Cauviya Selva, Jocelyn Grunwell, Rabindra Tirouvanziam, Shuichi Takayama

Abstract

High-throughput tissue barrier models can yield critical insights on how barrier function responds to therapeutics, pathogens, and toxins. However, such models often emphasize multiplexing capability at the expense of physiologic relevance. Particularly, the distal lung's air-blood barrier is typically modeled with epithelial cell monoculture, neglecting the substantial contribution of endothelial cell feedback in the coordination of barrier function. An obstacle to establishing high-throughput coculture models relevant to the epithelium/endothelium interface is the requirement for underside cell seeding, which is difficult to miniaturize and automate. Therefore, this paper describes a scalable, low-cost seeding method that eliminates inversion by optimizing medium density to float cells so they attach under the membrane. This method generates a 96-well model of the distal lung epithelium-endothelium barrier with serum-free, glucocorticoid-free air-liquid differentiation. The polarized epithelial-endothelial coculture exhibits mature barrier function, appropriate intercellular junction staining, and epithelial-to-endothelial transmission of inflammatory stimuli such as polyinosine:polycytidylic acid (poly(I:C)). Further, exposure to influenza A virus PR8 and human beta-coronavirus OC43 initiates a dose-dependent inflammatory response that propagates from the epithelium to endothelium. While this model focuses on the air-blood barrier, the underside seeding method is generalizable to various coculture tissue models for scalable, physiologic screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。