Identification and functional characterization of Arabidopsis PEROXIN4 and the interacting protein PEROXIN22

拟南芥 PEROXIN4 及其相互作用蛋白 PEROXIN22 的鉴定及功能表征

阅读:6
作者:Bethany K Zolman, Melanie Monroe-Augustus, Illeana D Silva, Bonnie Bartel

Abstract

Peroxins are genetically defined as proteins necessary for peroxisome biogenesis. By screening for reduced response to indole-3-butyric acid, which is metabolized to active auxin in peroxisomes, we isolated an Arabidopsis thaliana peroxin4 (pex4) mutant. This mutant displays sucrose-dependent seedling development and reduced lateral root production, characteristics of plant peroxisome malfunction. We used yeast two-hybrid analysis to determine that PEX4, an apparent ubiquitin-conjugating enzyme, interacts with a previously unidentified Arabidopsis protein, PEX22. A pex4 pex22 double mutant enhanced pex4 defects, confirming that PEX22 is a peroxin. Expression of both Arabidopsis genes together complemented yeast pex4 or pex22 mutant defects, whereas expression of either gene individually failed to rescue the corresponding yeast mutant. Therefore, it is likely that the Arabidopsis proteins can function similarly to the yeast PEX4-PEX22 complex, with PEX4 ubiquitinating substrates and PEX22 tethering PEX4 to the peroxisome. However, the severe sucrose dependence of the pex4 pex22 mutant is not accompanied by correspondingly strong defects in peroxisomal matrix protein import, suggesting that this peroxin pair may have novel plant targets in addition to those important in fungi. Isocitrate lyase is stabilized in pex4 pex22, indicating that PEX4 and PEX22 may be important during the remodeling of peroxisome matrix contents as glyoxysomes transition to leaf peroxisomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。