Bottom-up proteomics analysis for adduction of the broad-spectrum herbicide atrazine to histone

自下而上的蛋白质组学分析广谱除草剂阿特拉津与组蛋白的结合

阅读:6
作者:Shaogang Chu, Robert J Letcher

Abstract

Histones are the major proteinaceous components of chromatin in eukaryotic cells and an important part of the epigenome. The broad-spectrum herbicide atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-1, 3, 5-triazine) and its metabolites are known to form protein adducts, but the formation of atrazine-histone adducts has not been studied. In this study, a bottom-up proteomics analysis method was optimized and applied to identify histone adduction by atrazine in vitro. Whole histones of calf thymus or human histone H3.3 were incubated with atrazine. After solvent-based protein precipitation, the protein was digested by trypsin/Glu-C and the resulting peptides were analyzed by high-resolution mass spectrometry using an ultra-high-performance liquid chromatograph interfaced with a quadrupole Exactive-Orbitrap mass spectrometer. The resulting tryptic/Glu-C peptide of DTNLCAIHAK from calf thymus histone H3.1 or human histone H3.3 was identified with an accurate mass shift of +179.117 Da in atrazine incubated samples. It is deduced that a chemical group with an elemental composition of C8H13N5 (179.1171 Da) from atrazine adducted with calf thymus histone H3.1 or human histone H3.3. It was confirmed by MS/MS analysis that the adduction position was at its cysteine 110 residue. Time- and concentration-dependent assays also confirmed the non-enzymatic covalent modification of histone H3.3 by atrazine in vitro. Thus, the potential exists that atrazine adduction may lead to the alteration of histones that subsequently disturbs their normal function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。