Phagocytosis of apoptotic cells by macrophages in anti-neutrophil cytoplasmic antibody-associated systemic vasculitis

抗中性粒细胞胞浆抗体相关系统性血管炎中巨噬细胞对凋亡细胞的吞噬作用

阅读:4
作者:S M Ohlsson, Å Pettersson, S Ohlsson, D Selga, A A Bengtsson, M Segelmark, T Hellmark

Abstract

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group of autoimmune diseases, including granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA). It is not known why ANCA develop, but it has been shown that they participate in pathogenesis by activating polymorphonuclear neutrophils (PMNs). In this study we hypothesize that dysregulation of phagocytosis in AAV leads to the accumulation of apoptotic neutrophils seen in association with blood vessels in AAV. These cells progress into secondary necrosis, contributing to tissue damage and autoantibody formation. Peripheral blood cells were counted, and phagocytosis was investigated using monocyte-derived macrophages (MØ) and PMNs from healthy blood donors (HBD), AAV patients and systemic lupus erythematosus (SLE) patients. Furthermore, the effect of serum was assessed. Phagocytosis was measured using flow cytometry. The results showed no deviation in monocyte subpopulations for AAV patients compared to HBDs, although there was a decrease in lymphocyte and pDC (plasmacytoid dendritic cell) populations (4·2 × 10(6) cells/l versus 10·4 × 10(6) cells/l, P < 0·001). The number of neutrophils was increased (6·0 × 10(9) cells/l versus 3·8 × 10(9) cells/l, P < 0·001). There were no differences found in the ability of MØs to engulf apoptotic cells, nor when comparing apoptotic PMNs to become engulfed. However, serum from AAV donors tended to decrease the phagocytosis ability of MØs (36%) compared to serum from HBDs (43%). In conclusion, there is no intrinsic dysfunction in the MØs or in the PMNs that have an effect on phagocytic activity, but ANCA may play a role by decreasing phagocytic ability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。