Effect of developmental chlorpyrifos exposure, on endocannabinoid metabolizing enzymes, in the brain of juvenile rats

发育过程中毒死蜱暴露对幼年大鼠脑内源性大麻素代谢酶的影响

阅读:6
作者:Russell L Carr, Abdolsamad Borazjani, Matthew K Ross

Abstract

The endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA or anandamide) play vital roles during nervous system development including regulating axonal guidance and synaptogenesis. The enzymatic degradation of 2-AG and AEA is highly susceptible to inhibition by organophosphate compounds in vitro. Furthermore, acute in vivo exposure of adult animals to the agricultural insecticide chlorpyrifos (CPS) caused moderate inhibition of both 2-AG and AEA hydrolysis. However, the effects of repeated exposure to lower levels of CPS, especially during development, on endocannabinoid metabolism in the brain is not known. To examine this, rat pups were orally exposed daily from postnatal days 10-16 to either 1.0, 2.5, or 5.0 mg/kg CPS. Body weight gain was reduced by 5.0 mg/kg on all days of treatment whereas 2.5 mg/kg reduced the weight gain only on the last two days of treatment. At 4-h postexposure on day 16, forebrain cholinesterase (ChE) activity and hydrolysis of 2-AG and AEA were inhibited in a dose-related manner, and the extent of inhibition from highest to lowest level was AEA hydrolysis > ChE activity > 2-AG hydrolysis. The extent of inhibition of AEA hydrolysis was approximately twice than that of ChE activity with AEA hydrolysis being virtually eliminated by 2.5 and 5.0 mg/kg and 1.0 mg/kg causing 40% inhibition. The sensitivity of AEA hydrolysis, compared with canonical targets such as ChE activity, suggests a potential alternative developmental target for CPS. Inhibition of AEA hydrolysis could result in accumulation of endocannabinoids, which could alter normal endocannabinoid transmission during brain maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。