Functional and Bioactive Benefits of Selected Microalgal Hydrolysates Assessed In Silico and In Vitro

通过计算机模拟和体外实验评估选定微藻水解物的功能和生物活性益处

阅读:6
作者:Elena Aurino, Leticia Mora, Antonio Marzocchella, Christina M Kuchendorf, Bärbel Ackermann, Maria Hayes

Abstract

BIOPEP-UWM, a peptide database, contains 5128 peptides from a myriad of resources. Five listed peptides are Angiotensin-I-converting enzyme (ACE-1; EC3.4.15.1) inhibitory peptides derived from a red alga, while two from Chlorella vulgaris have anti-cancer and antioxidative bioactivities. Herein, we describe a process combining hydrolysis with two enzymes, Alcalase and Viscozyme, and filtration to generate protein-rich, bioactive peptide-containing hydrolysates from mixed species of Chlorella sp. and Scenedesmus sp. The potential of generated algal hydrolysates to act as food ingredients was determined by assessment of their techno-functional (foaming, emulsification, solubility, water holding, and oil holding capacity) properties. Bioactive screening of hydrolysates in vitro combined with mass spectrometry (MS) and in silico predictions identified bioactive and functional hydrolysates and six novel peptides. Peptides derived from Chlorella mix have the sequences YDYIGNNPAKGGLF and YIGNNPAKGGLF with predicted anti-inflammatory (medium confidence) and umami potential. Peptides from Scenedesmus mix have sequences IEWYGPDRPKFL, RSPTGEIIFGGETM, TVQIPGGERVPFLF, and IEWYGPDRPKFLGPF with predicted anti-inflammatory, anti-diabetic, and umami attributes. Such microalgal hydrolysates could provide essential amino acids to consumers as well as tertiary health benefits to improve human global health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。