DNA methylation modifies urine biomarker levels in 1,6-hexamethylene diisocyanate exposed workers: a pilot study

DNA 甲基化改变 1,6-六亚甲基二异氰酸酯暴露工人尿液生物标志物水平:一项初步研究

阅读:7
作者:Leena A Nylander-French, Michael C Wu, John E French, Jayne C Boyer, Lisa Smeester, Alison P Sanders, Rebecca C Fry

Abstract

DNA methylation may mediate inter-individual responses to chemical exposure and, thus, modify biomarker levels of exposure and effects. We analyzed inter-individual differences in inhalation and skin exposure to 1,6-hexamethylene diisocyanate (HDI) and urine biomarker 1,6-hexamethylene diamine (HDA) levels in 20 automotive spray-painters. Genome-wide 5-methyl cytosine (CpG) DNA methylation was assessed in each individual's peripheral blood mononuclear cells (PBMC) DNA using the Illumina 450K CpG array. Mediation analysis using linear regression models adjusted for age, ethnicity, and smoking was conducted to identify and assess the association between HDI exposure, CpG methylation, and urine HDA biomarker levels. We did not identify any CpGs common to HDI exposure and biomarker level suggesting that CpG methylation is a mediator that only partially explains the phenotype. Functional significance of genic- and intergenic-CpG methylation status was tested using protein-protein or protein-DNA interactions and gene-ontology enrichment to infer networks. Combined, the results suggest that methylation has the potential to affect HDI mass transport, permeation, and HDI metabolism. We demonstrate the potential use of PBMC methylation along with quantitative exposure and biomarker data to guide further investigation into the mediators of occupational exposure and biomarkers and its role in risk assessment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。