NOX2 mediates NLRP3/ROS facilitating nasal mucosal epithelial inflammation in chronic rhinosinusitis with nasal polyps

NOX2 介导 NLRP3/ROS 促进伴有鼻息肉的慢性鼻窦炎鼻黏膜上皮炎症

阅读:12
作者:Sijie Jiang, Benjian Zhang, Sihui Wen, Shenghao Cheng, Yingchun Shen, Shaobing Xie, Zhihai Xie, Weihong Jiang

Background

Previous investigations have provided limited insight into the role of oxidative stress in nasal mucosa inflammation. The

Conclusion

This study highlights the crucial role of NOX2 as a key regulator of ROS accumulation and NLRP3 inflammasome activation in CRSwNP, underscoring its potential as a valuable therapeutic target for CRSwNP.

Methods

Single-cell RNA sequencing data from HRA000772 were used to assess oxidative stress, inflammasome activation, and nicotinamide adenine dinucleotide phosphate oxidases (NOXs) expression in epithelial cells via integrative rank-based gene set enrichment analysis. The localization of reactive oxygen species (ROS) and NOX2 in nasal mucosa and cell models was visualized using fluorescent probes and immunohistochemistry, respectively. Functional studies on NOX2 involved siRNA and plasmid transfections in vitro, while Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity was examined using the inducer TMAO and the inhibitor MCC950.

Results

Single-cell RNA sequencing data suggested an increase of oxidative stress score and NLRP3 inflammasome score in CRSwNP epithelial cells. Vitro experiments demonstrated that lipopolysaccharide could induce ROS accumulation, NLRP3 inflammasome activation and epithelial alarmin expression. MCC950 inhibited the expression of epithelia alarmin in vitro. Elevated NOX2 in CRSwNP epithelial cells was associated with increased ROS, NLRP3 inflammasome activation, and epithelial alarmin expression. NOX2-targeted siRNA inhibited these effects in vitro. Moreover, TMAO reversed the downregulation of epithelial alarmins without impacting ROS levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。