Non-similar bioconvective analysis of magnetized hybrid nanofluid (Ag + TiO2) flow over exponential stretching surface

磁化混合纳米流体(Ag + TiO2)在指数拉伸表面上流动的非相似生物对流分析

阅读:9
作者:Jifeng Cui, Haseena, Umer Farooq, Ahmed Jan, Muzamil Hussain

Abstract

Scientists have studied fluid flow over a stretching sheet to explore its potential applications in industries. This study investigates the exponential stretching flow of a bioconvective magnetohydrodynamic (MHD) hybrid nanofluid in porous medium taking into consideration thermal radiations, heat generation, chemical reaction, porosity, and dissipation. Moreover, microorganisms are present in the fluid, so the fluid is more stable, which is crucial in biotechnology, biomicrosystems, and bio-nano coolant systems. Silver and titanium dioxide in a water-based medium are the prototypical nanoparticles. The present study involves a transformation of the governing system into a set of dimensionless, coupled and nonlinear partial differential equations (PDEs) using nonsimilar techniques. The local non-similarity (LNS) technique is used to truncate these equations to ordinary differential equations (ODEs). This technique is also used to estimate transformed equations numerically until the second level of truncation takes place via the bvp4c algorithm, which is a built-in MATLAB solver. Furthermore, tables are provided that presents the drag coefficients, Nusselt numbers, Sherwood numbers, and densities of motile microorganisms. Results show a negative correlation between the velocity and the magnetic field parameter as well as the porosity parameter, as evidenced by a decrease in velocity corresponds to rises in these parameters. The temperature distribution exhibits a positive correlation with the rising values of both radiation parameter and Eckert number. The concentration profiles also exhibit a negative correlation with the increasing values of Lewis and bioconvection Lewis number, chemical reaction parameter, Peclet number and the differences in microbial concentration. This study will improve the future research on hybrid nanofluid regarding industrial applications. There haven't been any previous publications that have investigated the use of this model with the local non-similarity method. The main objective of this article is to enhance the heat transfer performance in a hybrid nanofluid.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。