A dynamic in vitro BBB model for the study of immune cell trafficking into the central nervous system

用于研究免疫细胞向中枢神经系统运输的动态体外 BBB 模型

阅读:5
作者:Luca Cucullo, Nicola Marchi, Mohammed Hossain, Damir Janigro

Abstract

Although there is significant evidence correlating overreacting or perhaps misguided immune cells and the blood-brain barrier (BBB) with the pathogenesis of neuroinflammatory diseases, the mechanisms by which they enter the brain are largely unknown. For this purpose, we revised our humanized dynamic in vitro BBB model (DIV-BBBr) to incorporate modified hollow fibers that now feature transmural microholes (2 to 4 μm Ø) allowing for the transendothelial trafficking of immune cells. As with the original model, this new DIV-BBBr reproduces most of the physiological characteristics of the BBB in vivo. Measurements of transendothelial electrical resistance (TEER), sucrose permeability, and BBB integrity during reversible osmotic disruption with mannitol (1.6 mol/L) showed that the microholes do not hamper the formation of a tight functional barrier. The in vivo rank permeability order of sucrose, phenytoin, and diazepam was successfully reproduced in vitro. Flow cessation followed by reperfusion (Fc/Rp) in the presence of circulating monocytes caused a biphasic BBB opening paralleled by a significant increase of proinflammatory cytokines and activated matrix metalloproteinases. We also observed abluminal extravasation of monocytes but only when the BBB was breached. In conclusion, the DIV-BBBr represents the most realistic in vitro system to study the immune cell trafficking across the BBB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。