Interfaces and Oxygen Vacancies-Enriched Catalysts Derived from Cu-Mn-Al Hydrotalcite towards High-Efficient Water-Gas Shift Reaction

界面和富含氧空位的 Cu-Mn-Al 水滑石催化剂用于高效水煤气变换反应

阅读:4
作者:Hanci Li, Zhenyi Xiao, Pei Liu, Hairu Wang, Jiajun Geng, Huibin Lei, Ou Zhuo

Abstract

The water-gas shift (WGS) reaction is an important process in the hydrogen industry, and its catalysts are of vital importance for this process. However, it is still a great challenge to develop catalysts with both high activity and high stability. Herein, a series of high-purity Cu-Mn-Al hydrotalcites with high Cu content have been prepared, and the WGS performance of the Cu-Mn-Al catalysts derived from these hydrotalcites have been studied. The results show that the Cu-Mn-Al catalysts have both outstanding catalytic activity and excellent stability. The optimized Cu-Mn-Al catalyst has displayed a superior reaction rate of 42.6 μmolCO-1⋅gcat-1⋅s-1, while the CO conversion was as high as 96.1% simultaneously. The outstanding catalytic activities of the Cu-Mn-Al catalysts could be ascribed to the enriched interfaces between Cu-containing particles and manganese oxide particles, and/or abundant oxygen vacancies. The excellent catalytic stability of the Cu-Mn-Al catalysts may be benefitting from the low valence state of the manganese of manganese oxides, because the low valence manganese oxides have good anti-sintering properties and can stabilize oxygen vacancies. This study provides an example for the construction of high-performance catalysts by using two-dimensional hydrotalcite materials as precursors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。