Calpain inhibition attenuates right ventricular contractile dysfunction after acute pressure overload

钙蛋白酶抑制可减轻急性压力超负荷后的右心室收缩功能障碍

阅读:17
作者:Clifford R Greyson, Gregory G Schwartz, Li Lu, Shuyu Ye, Steve Helmke, Ya Xu, Hasan Ahmad

Abstract

Right ventricular contractile failure from acute RV pressure overload is an important cause of morbidity and mortality, but the mechanism of RV failure in this setting is incompletely defined. We hypothesized that RV dysfunction from acute RV pressure overload is, in part, due to activation of calpain, and that calpain inhibition would therefore attenuate RV dysfunction. Anesthetized, open chest pigs were treated with the calpain inhibitor MDL-28170 or with inactive vehicle, and then subjected to acute RV pressure overload for 90 min. RV contractile function was assessed by the regional Frank-Starling relation. RV myocardial tissue was analyzed for evidence of calpain activation and calpain-mediated proteolysis. RV pressure overload caused severe contractile dysfunction, along with significant alterations in the endogenous calpain inhibitor calpastatin typical of calpain activation. MDL-28170 attenuated RV free wall dysfunction by more than 50%. However, there were no differences in degradation of spectrin, desmin, troponin-I or SERCA2 between SHAM operated pigs and pigs subjected to acute RV pressure overload, or between vehicle and MDL-28170 treated pigs. Acute RV pressure overload causes calpain activation, and RV contractile dysfunction from acute RV pressure overload is attenuated by the calpain inhibitor MDL-28170; however, the effect is not explained by inhibition of calpain-mediated degradation of spectrin, desmin, troponin-I or SERCA2. Because this is the first report of any agent that can directly attenuate RV contractile dysfunction in acute RV pressure overload, further investigation of the mechanism of action of MDL-28170 in this setting is warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。