Gold Nanoparticle Inhibits the Tumor-Associated Macrophage M2 Polarization by Inhibiting m6A Methylation-Dependent ATG5/Autophagy in Prostate Cancer

金纳米粒子通过抑制前列腺癌中 m6A 甲基化依赖性 ATG5/自噬来抑制肿瘤相关巨噬细胞 M2 极化

阅读:18
作者:Yuanyuan Hao, Feng Duan, Xianning Dong, Ran Bi, Yinzhe Wang, Senqiang Zhu, Jinghai Hu

Background

This study aims to study how gold nanoparticles (AuNPs) function in the recruitment and polarization of tumor-associated macrophages (TAMs) in hormone-sensitive prostate cancer (HSPC) and castration-resistant prostate cancer (CRPC).

Conclusion

The ATG5/autophagy pathway is inhibited by AuNP treatment in an METTL3/m6A-dependent manner. AuNPs inhibit the TAM M2 polarization in HSPC and CRPC by inhibiting ATG5/autophagy.

Methods

Phorbol ester (PMA)-treated THP-1 cells were cocultured with LNCaP or PC3 cells to simulate TAMs. Macrophage M2 polarization levels were detected using flow cytometry and M2 marker determination. ATG5 expression was detected by western blotting. Luciferase reporter assay was used to analyze the N6-methyladenosine (m6A) site activity of ATG5 3' untranslated regions (3'-UTRs). Methylated RNA immune precipitation (MeRIP)-quantitative polymerase chain reaction (qPCR) was performed to determine the m6A levels at ATG5 3'-UTR. Xenograft mouse models were used to determine the function of AuNPs in vivo.

Results

Macrophages exhibited reduced M2 polarization in both HSPC and CRPC cells after AuNP treatment which was prevented by induction of autophagy. AuNP treatment decreased the m6A levels in the 3'-UTR of ATG5. Mutational analysis of potential m6A sites within ATG5 3'-UTR revealed that these sites were required for AuNP regulation, indicating that AuNPs inhibited ATG5 levels in an m6A-dependent manner. The mouse model revealed that AuNPs significantly reduced the M2 polarization of TAMs in an autophagy-dependent manner in vivo. This suggests that AuNPs inhibit tumor growth in vivo partially through targeting M2 TAM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。