Drug Integrating Amphiphilic Nano-Assemblies: 2. Spatiotemporal Distribution within Inflammation Sites

药物整合两亲性纳米组装体:2. 炎症部位的时空分布

阅读:9
作者:Teresa De Toni, Teodora Dal Buono, Chris M Li, Grisell C Gonzalez, Sung-Ting Chuang, Peter Buchwald, Alice A Tomei, Diana Velluto

Abstract

The need for chronic systemic immunosuppression, which is associated with unavoidable side-effects, greatly limits the applicability of allogeneic cell transplantation for regenerative medicine applications including pancreatic islet cell transplantation to restore insulin production in type 1 diabetes (T1D). Cell transplantation in confined sites enables the localized delivery of anti-inflammatory and immunomodulatory drugs to prevent graft loss by innate and adaptive immunity, providing an opportunity to achieve local effects while minimizing unwanted systemic side effects. Nanoparticles can provide the means to achieve the needed localized and sustained drug delivery either by graft targeting or co-implantation. Here, we evaluated the potential of our versatile platform of drug-integrating amphiphilic nanomaterial assemblies (DIANAs) for targeted drug delivery to an inflamed site model relevant for islet transplantation. We tested either passive targeting of intravenous administered spherical nanomicelles (nMIC; 20-25 nm diameter) or co-implantation of elongated nanofibrils (nFIB; 5 nm diameter and >1 μm length). To assess the ability of nMIC and nFIB to target an inflamed graft site, we used a lipophilic fluorescent cargo (DiD and DiR) and evaluated the in vivo biodistribution and cellular uptake in the graft site and other organs, including draining and non-draining lymph nodes, after systemic administration (nMIC) and/or graft co-transplantation (nFIB) in mice. Localized inflammation was generated either by using an LPS injection or by using biomaterial-coated islet-like bead implantation in the subcutaneous site. A cell transplant inflammation model was used as well to test nMIC- and nFIB-targeted biodistribution. We found that nMIC can reach the inflamed site after systemic administration, while nFIB remains localized for several days after co-implantation. We confirmed that DIANAs are taken up by different immune cell populations responsible for graft inflammation. Therefore, DIANA is a useful approach for targeted and/or localized delivery of immunomodulatory drugs to decrease innate and adaptive immune responses that cause graft loss after transplantation of therapeutic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。