Toward Stability Enhancement of NTS1R-Targeted Radioligands: Structural Interventions on [99mTc]Tc-DT1

增强 NTS1R 靶向放射性配体的稳定性:对 [99mTc]Tc-DT1 的结构干预

阅读:5
作者:Panagiotis Kanellopoulos, Berthold A Nock, Eric P Krenning, Theodosia Maina

Abstract

The neurotensin subtype 1 receptor (NTS1R) is overexpressed in a number of human tumors, thereby representing a valid target for cancer theranostics with radiolabeled neurotensin (NT) analogs like [99mTc]Tc-DT1 (DT1, N4-Gly7-NT(8-13)). Thus far, the fast degradation of intravenously injected NT-radioligands by neprilysin (NEP) and angiotensin-converting enzyme (ACE) has compromised their clinical applicability. Aiming at metabolic stability enhancements, we herein introduce (i) DT7 ([DAsn14]DT1) and (ii) DT8 ([β-Homoleucine13]DT1), modified at the C-terminus, along with (iii) DT9 ([(palmitoyl)Lys7]DT1), carrying an albumin-binding domain (ABD) at Lys7. The biological profiles of the new [99mTc]Tc-radioligands were compared with [99mTc]Tc-DT1, using NTS1R-expressing AsPC-1 cells and mice models without or during NEP/ACE inhibition. The radioligands showed enhanced in vivo stability vs. [99mTc]Tc-DT1, with [99mTc]Tc-DT9 displaying full resistance to both peptidases. Furthermore, [99mTc]Tc-DT9 achieved the highest cell internalization and tumor uptake even without NEP/ACE-inhibition but with unfavorably high background radioactivity levels. Hence, unlike C-terminal modification, the introduction of a pendant ABD group in the linker turned out to be the most promising strategy toward metabolic stability, cell uptake, and tumor accumulation of [99mTc]Tc-DT1 mimics. To improve the observed suboptimal pharmacokinetics of [99mTc]Tc-DT9, the replacement of palmitoyl on Lys7 by other ABD groups is currently being pursued.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。