The retinoid X receptor α modulator K-80003 suppresses inflammatory and catabolic responses in a rat model of osteoarthritis

类视黄酸 X 受体 α 调节剂 K-80003 可抑制骨关节炎大鼠模型中的炎症和分解代谢反应

阅读:4
作者:Hua Li #, Xiaofan Li #, Boyu Yang, Junnan Su, Shaofang Cai, Jinmei Huang, Tianfu Hu, Lijuan Chen, Yaping Xu, Yuhang Li

Abstract

Osteoarthritis (OA), a most common and highly prevalent joint disease, is closely associated with dysregulated expression and modification of RXRα. However, the role of RXRα in the pathophysiology of OA remains unknown. The present study aimed to investigate whether RXRα modulator, such as K-80003 can treat OA. Experimental OA was induced by intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats. Articular cartilage degeneration was assessed using Safranin-O and fast green staining. Synovial inflammation was measured using hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay (ELISA). Expressions of MMP-13, ADAMTS-4 and ERα in joints were analyzed by immunofluorescence staining. Western blot, RT-PCR and co-Immunoprecipitation (co-IP) were used to assess the effects of K-80003 on RXRα-ERα interaction. Retinoid X receptor α (RXRα) modulator K-80003 prevented the degeneration of articular cartilage, reduced synovial inflammation, and alleviated osteoarthritic pain in rats. Furthermore, K-80003 markedly inhibited IL-1β-induced p65 nuclear translocation and IκBα degradation, and down-regulate the expression of HIF-2α, proteinases (MMP9, MMP13, ADAMTS-4) and pro-inflammatory factors (IL-6 and TNFα) in primary chondrocytes. Additionally, knockdown of ERα with siRNA blocked these effects of K-80003 in chondrocytes. In conclusion, RXRα modulators K-80003 suppresses inflammatory and catabolic responses in OA, suggesting that targeting RXRα-ERα interaction by RXRα modulators might be a novel therapeutic approach for OA treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。