Rapid degeneration and neurochemical plasticity of the lateral geniculate nucleus following lesions of the primary visual cortex in marmoset monkeys

狨猴初级视觉皮层损伤后外侧膝状体快速退化及神经化学可塑性

阅读:11
作者:Gaoyuan Ma, Jonathan M Chan, Katrina H Worthy, Marcello G P Rosa, Nafiseh Atapour

Abstract

Lesions of the primary visual cortex (V1) cause retrograde neuronal degeneration, volume loss and neurochemical changes in the lateral geniculate nucleus (LGN). Here we characterised the timeline of these processes in adult marmoset monkeys, after various recovery times following unilateral V1 lesions. Observations in NeuN-stained sections obtained from animals with short recovery times (2, 3 or 14 days) showed that the volume and neuronal density in the LGN ipsilateral to the lesions were similar to those in the contralateral hemispheres. However, neuronal density in the lesion projection zone of LGN dropped rapidly thereafter, with approximately 50% of the population lost within a month post-lesion. This level of neuronal loss remained stable for over three years post-lesion. In comparison, shrinkage of the LGN volume progressed more gradually, not reaching a stable value until 6 months post lesion. We also determined the time course of the expression of the calcium-binding protein calbindin (CB) in magnocellular (M) and parvocellular (P) layer neurons, a form of neurochemical plasticity previously reported to be triggered by V1 lesions. We found that CB expression could be detected in surviving M and P neurons as early as two weeks after lesion, with the percentage of neurons showing this neurochemical phenotype gradually increasing over 6 months. Thus, neurochemical change precedes neuronal degeneration, suggesting it may be linked to a protective mechanism. This study highlights the limited time window for any possible interventions aimed at reducing secondary neuronal loss in the visual afferent pathways following damage to V1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。