Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p

富含苏氨酸的重复序列可增加白色念珠菌粘附素 Als5p 中的纤连蛋白结合

阅读:11
作者:Jason M Rauceo, Richard De Armond, Henry Otoo, Peter C Kahn, Stephen A Klotz, Nand K Gaur, Peter N Lipke

Abstract

Commensal and pathogenic states of Candida albicans depend on cell surface-expressed adhesins, including those of the Als family. Mature Als proteins consist of a 300-residue N-terminal region predicted to have an immunoglobulin (Ig)-like fold, a 104-residue conserved Thr-rich region (T), a central domain of a variable number of tandem repeats (TR) of a 36-residue Thr-rich sequence, and a heavily glycosylated C-terminal Ser/Thr-rich stalk region, also of variable length (N. K. Gaur and S. A. Klotz, Infect. Immun. 65: 5289-5294, 1997). Domain deletions in ALS5 were expressed in Saccharomyces cerevisiae to excrete soluble protein and for surface display. Far UV circular dichroism indicated that soluble Ig-T showed a single negative peak at 212 nm, consistent with previous data indicating that this region has high beta-sheet content with very little alpha-helix. A truncation of Als5p with six tandem repeats (Ig-T-TR(6)) gave spectra with additional negative ellipticity at 200 nm and, at 227 to 240 nm, spectra characteristic of a structure with a similar fraction of beta-sheet but with additional structural elements as well. Soluble Als5p Ig-T and Ig-T-TR(6) fragments bound to fibronectin in vitro, but the inclusion of the TR region substantially increased affinity. Cellular adhesion assays with S. cerevisiae showed that the Ig-T domain mediated adherence to fibronectin and that TR repeats greatly increased cell-to-cell aggregation. Thus, the TR region of Als5p modulated the structure of the Ig-T region, augmented cell adhesion activity through increased binding to mammalian ligands, and simultaneously promoted fungal cell-cell interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。