In vitro evaluation of a bone morphogenetic protein‑2 nanometer hydroxyapatite collagen scaffold for bone regeneration

骨形态发生蛋白-2 纳米羟基磷灰石胶原支架对骨再生的体外评价

阅读:6
作者:Yue Cai, Shuang Tong, Ran Zhang, Tong Zhu, Xukai Wang

Abstract

Scaffold fabrication and biocompatibility are crucial for successful bone tissue engineering. Nanometer hydroxyapatite (nHAP) combined with collagen (COL) is frequently utilized as a suitable osseous scaffold material. Furthermore, growth factors, including bone morphogenetic protein‑2 (BMP‑2), are used to enhance the scaffold properties. The present study used blending and freeze‑drying methods to develop a BMP‑2‑nHAP‑COL scaffold. An ELISA was performed to determine the BMP‑2 release rate from the scaffold. Flow cytometry was used to identify rat bone marrow‑derived mesenchymal stem cells (BMSCs) prior to their combination with the scaffold. Scanning electron microscopy was used to observe the scaffold structure and BMSC morphology following seeding onto the scaffold. BMSCs were also used to assess the biological compatibility of the scaffold in vitro. BMP‑2‑nHAP‑COL and nHAP‑COL scaffolds were assessed alongside the appropriate control groups. Cells were counted to determine early cell adhesion. Cell Counting kit‑8 and alkaline phosphatase assays were used to detect cell proliferation and differentiation, respectively. Gross morphology confirmed that the BMP‑2‑nHAP‑COL scaffold microstructure conformed to the optimal characteristics of a bone tissue engineering scaffold. Furthermore, the BMP‑2‑nHAP‑COL scaffold exhibited no biological toxicity and was demonstrated to promote BMSC adhesion, proliferation and differentiation. The BMP‑2‑nHAP‑COL scaffold had good biocompatibility in vitro, and may therefore be modified further to construct an optimized scaffold for future bone tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。