Synthesis and Characterization of Carvedilol-Etched Halloysite Nanotubes Composites with Enhanced Drug Solubility and Dissolution Rate

卡维地洛蚀刻埃洛石纳米管复合材料的合成与表征及其对药物溶解度和溶出度的提高

阅读:15
作者:Lauretta Maggi, Claudia Urru, Valeria Friuli, Chiara Ferrara, Debora Maria Conti, Giovanna Bruni, Doretta Capsoni

Abstract

Carvedilol is a poorly water-soluble drug employed to treat chronic heart failure. In this study, we synthesize new carvedilol-etched halloysite nanotubes (HNTs) composites to enhance solubility and dissolution rate. The simple and feasible impregnation method is used for carvedilol loading (30-37% weight). Both the etched HNTs (acidic HCl and H2SO4 and alkaline NaOH treatments) and the carvedilol-loaded samples are characterized by various techniques (XRPD, FT-IR, solid-state NMR, SEM, TEM, DSC, and specific surface area). The etching and loading processes do not induce structural changes. The drug and carrier particles are in intimate contact and their morphology is preserved, as demonstrated by TEM images. The 27Al and 13C solid-state NMR and FT-IR findings show that carvedilol interactions involve the external siloxane surface, especially the aliphatic carbons, the functional groups, and, by inductive effect, the adjacent aromatic carbons. All the carvedilol-halloysite composites display enhanced dissolution rate, wettability, and solubility, as compared to carvedilol. The best performances are obtained for the carvedilol-halloysite system based on HNTs etched with HCl 8M, which exhibits the highest value of specific surface area (91 m2 g-1). The composites make the drug dissolution independent of the environmental conditions of the gastrointestinal tract and its absorption less variable, more predictable, and independent from the pH of the medium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。