Plasmonic nano-bowls for monitoring intra-membrane changes in liposomes, and DNA-based nanocarriers in suspension

用于监测脂质体膜内变化的等离子体纳米碗和悬浮液中的基于 DNA 的纳米载体

阅读:3
作者:Sathi Das, Jean-Claude Tinguely, Sybil Akua Okyerewa Obuobi, Nataša Škalko-Basnet, Kanchan Saxena, Balpreet Singh Ahluwalia, Dalip Singh Mehta

Abstract

Programmable nanoscale carriers, such as liposomes and DNA, are readily being explored for personalized medicine or disease prediction and diagnostics. The characterization of these nanocarriers is limited and challenging due to their complex chemical composition. Here, we demonstrate the utilization of surface-enhanced Raman spectroscopy (SERS), which provides a unique molecular fingerprint of the analytes while reducing the detection limit. In this paper, we utilize a silver coated nano-bowl shaped polydimethylsiloxane (PDMS) SERS substrate. The utilization of nano-bowl surface topology enabled the passive trapping of particles by reducing mobility, which results in reproducible SERS signal enhancement. The biological nanoparticles' dwell time in the nano-trap was in the order of minutes, thus allowing SERS spectra to remain in their natural aqueous medium without the need for drying. First, the geometry of the nano-traps was designed considering nanosized bioparticles of 50-150 nm diameter. Further, the systematic investigation of maximum SERS activity was performed using rhodamine 6 G as a probe molecule. The potential of the optimized SERS nano-bowl is shown through distinct spectral features following surface- (polyethylene glycol) and bilayer- (cholesterol) modification of empty liposomes of around 140 nm diameter. Apart from liposomes, the characterization of the highly crosslinked DNA specimens of only 60 nm in diameter was performed. The modification of DNA gel by liposome coating exhibited unique signatures for nitrogenous bases, sugar, and phosphate groups. Further, the unique sensitivity of the proposed SERS substrate displayed distinct spectral signatures for DNA micelles and drug-loaded DNA micelles, carrying valuable information to monitor drug release. In conclusion, the findings of the spectral signatures of a wide range of molecular complexes and chemical morphology of intra-membranes in their natural state highlight the possibilities of using SERS as a sensitive and instantaneous characterization alternative.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。