Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice

KNOX 调控网络的全基因组研究揭示了油菜素类固醇分解代谢基因对水稻茎分生组织功能至关重要

阅读:5
作者:Katsutoshi Tsuda, Nori Kurata, Hajime Ohyanagi, Sarah Hake

Abstract

In flowering plants, knotted1-like homeobox (KNOX) transcription factors play crucial roles in establishment and maintenance of the shoot apical meristem (SAM), from which aerial organs such as leaves, stems, and flowers initiate. We report that a rice (Oryza sativa) KNOX gene Oryza sativa homeobox1 (OSH1) represses the brassinosteroid (BR) phytohormone pathway through activation of BR catabolism genes. Inducible overexpression of OSH1 caused BR insensitivity, whereas loss of function showed a BR-overproduction phenotype. Genome-wide identification of loci bound and regulated by OSH1 revealed hormonal and transcriptional regulation as the major function of OSH1. Among these targets, BR catabolism genes CYP734A2, CYP734A4, and CYP734A6 were rapidly upregulated by OSH1 induction. Furthermore, RNA interference knockdown plants of CYP734A genes arrested growth of the SAM and mimicked some osh1 phenotypes. Thus, we suggest that local control of BR levels by KNOX genes is a key regulatory step in SAM function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。