Anisakis simplex allergy: a murine model of anaphylaxis induced by parasitic proteins displays a mixed Th1/Th2 pattern

异尖线虫过敏:寄生蛋白诱发的过敏反应小鼠模型表现出混合 Th1/Th2 模式

阅读:7
作者:M L Baeza, L Conejero, Y Higaki, E Martín, C Pérez, S Infante, M Rubio, J M Zubeldia

Abstract

The study of the singular hypersensitivity reactions to Anisakis simplex (A.s) proteins, may help us to undestand many of the unknown immune interactions between helmiths infections and allergy. We have developed a murine model of allergy to A. simplex, that mimics human A. simplex allergy to study the specific aspects of anaphylaxis induced by parasites. Male C3H/HeJ mice were intraperitoneally sensitized to A. simplex. Mice were then intravenous or orally challenged with A. simplex. Antigen-specific immunoglobulins, polyclonal IgE, anaphylactic symptoms, plasma histamine levels and cytokine profiles were determined. Comparative IgE immunoblot analyses were also performed. Specific IgE, IgG(1) and IgG(2a) were detected in sensitized mice since week 3. Polyclonal IgE raised and peaked with different kinetics. Intravenous A. simplex challenge produced anaphylaxis in mice, accompanied by plasma histamine release. Oral A. simplex challenge in similarly sensitized mice did not caused symptoms nor histamine release. Numerous A. simplex allergens were recognized by sensitized mouse sera, some of them similar to human serum. The A. simplex stimulated splenocytes released IL-10, IFN-gamma, IL-4, IL-13 and IL-5. We describe a new animal model of anaphylaxis. It exhibits characteristics of type I hypersensitivity reactions to Anisakis simplex similar to those observed in allergic humans. Different responses to i.v. or oral A. simplex challenges emerged, which did not reflect a window tolerization period. The cytokine profile developed (mixed Th(1)/Th(2) pattern) differed from the observed in classical models of anaphylaxis or allergy to food antigens. This model may permit to investigate the peculiar allergic reactions to parasitic proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。