Clinical-Grade Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Ameliorate the Progression of Osteoarthritis in a Rat Model

临床级人类胚胎干细胞衍生的间充质基质细胞可改善大鼠模型中的骨关节炎进展

阅读:6
作者:Dan Xing, Kai Wang, Jun Wu, Yu Zhao, Wei Liu, Jiao Jiao Li, Tingting Gao, Deng Yan, Liu Wang, Jie Hao, Jianhao Lin

Abstract

Mesenchymalstem cell (MSC)-based therapy is being increasingly explored in preclinical and clinical studies as a regenerative method for treating osteoarthritis (OA). However, the use of primary MSCs is hampered by a number of limitations, including donor heterogeneity and inconsistent cell quality. Here, we tested the therapeutic potential of embryonic stem cell-derived MSCs (ES-MSCs) in anOA rat model. ES-MSCs were generated and identified by morphology, trilineage differentiation and flow cytometry. Sprague Dawley rats were treated with either a single dose (106 cells/rat) of ES-MSCs or with three doses spaced one week apart for each dose, starting at four weeks after anterior cruciate ligament transectionto induce OA. Cartilage quality was evaluated at 6 and 10 weeks after treatment with behavioral analysis, macroscopic examination, and histology. At sixweeks after treatment, the groups treated with both single and repeated doses of ES-MSCs had significantly better modified Mankin scores and International Cartilage Repair Society (ICRS) macroscopic scores in the femoral condyle compared to the control group. At 10 weeks after treatment, the repeated doses group had a significantly better ICRS macroscopic scores in the femoral condyle compared to the single dose and control groups. Histological analysis also showed more proteoglycan and less cartilage loss, along with lower Mankin scores in the repeated doses group. In conclusion, treatment with multiple injections of ES-MSCs can ameliorate OA in a rat model. TheES-MSCs have potential to be considered as a regenerative therapy for OA, and can provide an infinite cellular source.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。