Drag Reduction in a Natural High-Frequency Swinging Micro-Articulation: Mouthparts of the Honey Bee

自然高频摆动微关节的阻力减少:蜜蜂的口器

阅读:6
作者:Guanya Shi, Jianing Wu, Shaoze Yan

Abstract

Worker-bee mouthparts consist of the glossa, the galeae and the vestigial labial palp, and it is these structures that enable bees to feed themselves. The articulation joints, 60∼70 µm in diameter, are present on the tip of the labial palp and are covered with olfactory sensilla, allowing movements between the segments. Using a specially designed high-speed camera system, we discovered that the articulation joint could swing in the nectar at a frequency of ∼50 Hz, considerably higher than the usual motion frequency of mammalian joints. To understand the potential drag reduction in this tiny organ, we examined its microstructure and also its surface wettability. We found that chitinous semispherical protuberances (4∼6 µm in diameter) are uniformly scattered on the surface of the joint and, moreover, that the surface is hydrophobic. We proposed a hydrodynamic model and revealed that the specialized surface can effectively reduce the mean equivalent friction (Ff) by ∼10%, through the use of protuberances immersed in the liquid feed. Theoretical results indicated that the dimensions of such protuberances are the predominant factor in minimizing Ff, and that the natural dimensions of the protuberances are close to the theoretical optimum at which friction is at a minimum. These discoveries may inspire the design of high-frequency micro-joints for engineering applications, such as in micro-stirrers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。