Generation of antigen-specific paired chain antibody sequences using large language models

使用大型语言模型生成抗原特异性双链抗体序列

阅读:5
作者:Perry T Wasdin, Nicole V Johnson, Alexis K Janke, Sofia Held, Toma M Marinov, Gwen Jordaan, Léna Vandenabeele, Fani Pantouli, Rebecca A Gillespie, Matthew J Vukovich, Clinton M Holt, Jeongryeol Kim, Grant Hansman, Jennifer Logue, Helen Y Chu, Sarah F Andrews, Masaru Kanekiyo, Giuseppe A Sautto, Ted

Abstract

The traditional process of antibody discovery is limited by inefficiency, high costs, and low success rates. Recent approaches employing artificial intelligence (AI) have been developed to optimize existing antibodies and generate antibody sequences in a target-agnostic manner. In this work, we present MAGE (Monoclonal Antibody GEnerator), a sequence-based Protein Language Model (PLM) fine-tuned for the task of generating paired human variable heavy and light chain antibody sequences against targets of interest. We show that MAGE can generate novel and diverse antibody sequences with experimentally validated binding specificity against SARS-CoV-2, an emerging avian influenza H5N1, and respiratory syncytial virus A (RSV-A). MAGE represents a first-in-class model capable of designing human antibodies against multiple targets with no starting template.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。