Structure-based Design of Chimeric Influenza Hemagglutinins to Elicit Cross-group Immunity

基于结构的设计嵌合流感血凝素以引发跨组免疫

阅读:5
作者:Karla M Castro, Reyhaneh Ayardulabi, Sarah Wehrle, Hongrui Cui, Sandrine Georgeon, Joseph Schmidt, Shuhao Xiao, Nishat Seraj, Wayne Harshbarger, Corey P Mallett, Ventzislav Vassilev, Xavier Saelens, Bruno E Correia

Abstract

Antigenic variability among influenza virus strains poses a significant challenge to developing broadly protective, long-lasting vaccines. Current annual vaccines target specific strains, requiring accurate prediction for effective neutralization. Despite sequence diversity across phylogenetic groups, the hemagglutinin (HA) head domain's structure remains highly conserved. Utilizing this conservation, we designed cross-group chimeric HAs that combine antigenic surfaces from distant strains. By structure-guided transplantation of receptor-binding site (RBS) residues, we displayed an H3 RBS on an H1 HA scaffold. These chimeric immunogens elicit cross-group polyclonal responses capable of neutralizing both base and distal strains. Additionally, the chimeras integrate heterotrimeric immunogens, enhancing modular vaccine design. This approach enables the inclusion of diverse strain segments to generate broad polyclonal responses. In the future, such modular immunogens may serve as tools for evaluating immunodominance and refining immunization strategies, offering potential to bridge and enhance immune responses in individuals with pre-existing immunity. This strategy holds promise for advancing universal influenza vaccine development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。