Dolichol biosynthesis and its effects on the unfolded protein response and abiotic stress resistance in Arabidopsis

多萜醇的生物合成及其对拟南芥未折叠蛋白反应和非生物胁迫抗性的影响

阅读:5
作者:Hairong Zhang, Kiyoshi Ohyama, Julie Boudet, Zhizhong Chen, Jilai Yang, Min Zhang, Toshiya Muranaka, Christophe Maurel, Jian-Kang Zhu, Zhizhong Gong

Abstract

Dolichols are long-chain unsaturated polyisoprenoids with multiple cellular functions, such as serving as lipid carriers of sugars used for protein glycosylation, which affects protein trafficking in the endoplasmic reticulum. The biological functions of dolichols in plants are largely unknown. We isolated an Arabidopsis thaliana mutant, lew1 (for leaf wilting1), that showed a leaf-wilting phenotype under normal growth conditions. LEW1 encoded a cis-prenyltransferase, which when expressed in Escherichia coli catalyzed the formation of dolichol with a chain length around C(80) in an in vitro assay. The lew1 mutation reduced the total plant content of main dolichols by approximately 85% and caused protein glycosylation defects. The mutation also impaired plasma membrane integrity, causing electrolyte leakage, lower turgor, reduced stomatal conductance, and increased drought resistance. Interestingly, drought stress in the lew1 mutant induced higher expression of the unfolded protein response pathway genes BINDING PROTEIN and BASIC DOMAIN/LEUCINE ZIPPER60 as well as earlier expression of the stress-responsive genes RD29A and COR47. The lew1 mutant was more sensitive to dark treatment, but this dark sensitivity was suppressed by drought treatment. Our data suggest that LEW1 catalyzes dolichol biosynthesis and that dolichol is important for plant responses to endoplasmic reticulum stress, drought, and dark-induced senescence in Arabidopsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。