Biological Characteristics of a Novel Bibenzyl Synthase (DoBS1) Gene from Dendrobium officinale Catalyzing Dihydroresveratrol Synthesis

铁皮石斛新型联苄合酶(DoBS1)基因催化二氢白藜芦醇合成的生物学特性

阅读:5
作者:Shao-Guo Zhou, Ke Zhong, Feng-Xia Yan, Fan Tian, Chang-Sha Luo, Hang-Cheng Yu, Zai-Qi Luo, Xi-Min Zhang

Abstract

Bibenzyl compounds are one of the most important bioactive components of natural medicine. However, Dendrobium officinale as a traditional herbal medicine is rich in bibenzyl compounds and performs functions such as acting as an antioxidant, inhibiting cancer cell growth, and assisting in neuro-protection. The biosynthesis of bibenzyl products is regulated by bibenzyl synthase (BBS). In this study, we have cloned the cDNA gene of the bibenzyl synthase (DoBS1) from D. officinale using PCR with degenerate primers, and we have identified a novel type III polyketide synthase (PKS) gene by phylogenetic analyses. In a series of perfect experiments, DoBS1 was expressed in Escherichia coli, purified and some catalytic properties of the recombinant protein were investigated. The molecular weight of the recombinant protein was verified to be approximately 42.7 kDa. An enzyme activity analysis indicated that the recombinant DoBS1-HisTag protein was capable of using 4-coumaryol-CoA and 3 malonyl-CoA as substrates for dihydroresveratrol (DHR) in vitro. The Vmax and Km of the recombinant protein for DHR were 3.57 ± 0.23 nmol·min-1·mg-1 and 0.30 ± 0.08 mmol, respectively. The present study provides further insights into the catalytic mechanism of the active site in the biosynthetic pathway for the catalytic production of dihydroresveratrol by bibenzylase in D. officinale. The results can be used to optimize a novel biosynthetic pathway for the industrial synthesis of DHR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。