Spatially Distinct Reprogramming of the Tumor Microenvironment Based On Tumor Invasion in Diffuse-Type Gastric Cancers

基于弥漫型胃癌肿瘤侵袭的肿瘤微环境空间独特重编程

阅读:5
作者:Hye Young Jeong #, In-Hye Ham #, Sung Hak Lee #, Daeun Ryu, Sang-Yong Son, Sang-Uk Han, Tae-Min Kim, Hoon Hur

Conclusions

This study reveals the spatial reprogramming of the TME that may underlie invasive tumor potential in diffuse-type gastric cancer. This TME profiling across tumor layers suggests new targets, such as CCL2, that can modify the TME to inhibit tumor progression in diffuse-type gastric cancer.See related commentary by Huang and Brekken, p. 6284.

Purpose

Histologic features of diffuse-type gastric cancer indicate that the tumor microenvironment (TME) may substantially impact tumor invasiveness. However, cellular components and molecular features associated with cancer invasiveness in the TME of diffuse-type gastric cancers are poorly understood. Experimental design: We performed single-cell RNA-sequencing (scRNA-seq) using tissue samples from superficial and deep invasive layers of cancerous and paired normal tissues freshly harvested from five patients with diffuse-type gastric cancer. The scRNA-seq

Results

Seven major cell types were identified. Fibroblasts, endothelial cells, and myeloid cells were categorized as being enriched in the deep layers. Cell type-specific clustering further revealed that the superficial-to-deep layer transition is associated with enrichment in inflammatory endothelial cells and fibroblasts with upregulated CCL2 transcripts. IHC and duplex ISH revealed the distribution of the major cell types and CCL2-expressing endothelial cells and fibroblasts, indicating tumor invasion. Elevation of CCL2 levels along the superficial-to-deep layer axis revealed the immunosuppressive immune cell subtypes that may contribute to tumor cell aggressiveness in the deep invasive layers of diffuse-type gastric cancer. The analyses of public datasets revealed the high-level coexpression of stromal cell-specific genes and that CCL2 correlated with poor survival outcomes in patients with gastric cancer. Conclusions: This study reveals the spatial reprogramming of the TME that may underlie invasive tumor potential in diffuse-type gastric cancer. This TME profiling across tumor layers suggests new targets, such as CCL2, that can modify the TME to inhibit tumor progression in diffuse-type gastric cancer.See related commentary by Huang and Brekken, p. 6284.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。